3.1115 \(\int \frac {1}{(1-x)^{11/2} \sqrt {1+x}} \, dx\)

Optimal. Leaf size=101 \[ \frac {8 \sqrt {x+1}}{315 \sqrt {1-x}}+\frac {8 \sqrt {x+1}}{315 (1-x)^{3/2}}+\frac {4 \sqrt {x+1}}{105 (1-x)^{5/2}}+\frac {4 \sqrt {x+1}}{63 (1-x)^{7/2}}+\frac {\sqrt {x+1}}{9 (1-x)^{9/2}} \]

[Out]

1/9*(1+x)^(1/2)/(1-x)^(9/2)+4/63*(1+x)^(1/2)/(1-x)^(7/2)+4/105*(1+x)^(1/2)/(1-x)^(5/2)+8/315*(1+x)^(1/2)/(1-x)
^(3/2)+8/315*(1+x)^(1/2)/(1-x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {45, 37} \[ \frac {8 \sqrt {x+1}}{315 \sqrt {1-x}}+\frac {8 \sqrt {x+1}}{315 (1-x)^{3/2}}+\frac {4 \sqrt {x+1}}{105 (1-x)^{5/2}}+\frac {4 \sqrt {x+1}}{63 (1-x)^{7/2}}+\frac {\sqrt {x+1}}{9 (1-x)^{9/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - x)^(11/2)*Sqrt[1 + x]),x]

[Out]

Sqrt[1 + x]/(9*(1 - x)^(9/2)) + (4*Sqrt[1 + x])/(63*(1 - x)^(7/2)) + (4*Sqrt[1 + x])/(105*(1 - x)^(5/2)) + (8*
Sqrt[1 + x])/(315*(1 - x)^(3/2)) + (8*Sqrt[1 + x])/(315*Sqrt[1 - x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {1}{(1-x)^{11/2} \sqrt {1+x}} \, dx &=\frac {\sqrt {1+x}}{9 (1-x)^{9/2}}+\frac {4}{9} \int \frac {1}{(1-x)^{9/2} \sqrt {1+x}} \, dx\\ &=\frac {\sqrt {1+x}}{9 (1-x)^{9/2}}+\frac {4 \sqrt {1+x}}{63 (1-x)^{7/2}}+\frac {4}{21} \int \frac {1}{(1-x)^{7/2} \sqrt {1+x}} \, dx\\ &=\frac {\sqrt {1+x}}{9 (1-x)^{9/2}}+\frac {4 \sqrt {1+x}}{63 (1-x)^{7/2}}+\frac {4 \sqrt {1+x}}{105 (1-x)^{5/2}}+\frac {8}{105} \int \frac {1}{(1-x)^{5/2} \sqrt {1+x}} \, dx\\ &=\frac {\sqrt {1+x}}{9 (1-x)^{9/2}}+\frac {4 \sqrt {1+x}}{63 (1-x)^{7/2}}+\frac {4 \sqrt {1+x}}{105 (1-x)^{5/2}}+\frac {8 \sqrt {1+x}}{315 (1-x)^{3/2}}+\frac {8}{315} \int \frac {1}{(1-x)^{3/2} \sqrt {1+x}} \, dx\\ &=\frac {\sqrt {1+x}}{9 (1-x)^{9/2}}+\frac {4 \sqrt {1+x}}{63 (1-x)^{7/2}}+\frac {4 \sqrt {1+x}}{105 (1-x)^{5/2}}+\frac {8 \sqrt {1+x}}{315 (1-x)^{3/2}}+\frac {8 \sqrt {1+x}}{315 \sqrt {1-x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 40, normalized size = 0.40 \[ \frac {\sqrt {x+1} \left (8 x^4-40 x^3+84 x^2-100 x+83\right )}{315 (1-x)^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - x)^(11/2)*Sqrt[1 + x]),x]

[Out]

(Sqrt[1 + x]*(83 - 100*x + 84*x^2 - 40*x^3 + 8*x^4))/(315*(1 - x)^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 86, normalized size = 0.85 \[ \frac {83 \, x^{5} - 415 \, x^{4} + 830 \, x^{3} - 830 \, x^{2} - {\left (8 \, x^{4} - 40 \, x^{3} + 84 \, x^{2} - 100 \, x + 83\right )} \sqrt {x + 1} \sqrt {-x + 1} + 415 \, x - 83}{315 \, {\left (x^{5} - 5 \, x^{4} + 10 \, x^{3} - 10 \, x^{2} + 5 \, x - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(11/2)/(1+x)^(1/2),x, algorithm="fricas")

[Out]

1/315*(83*x^5 - 415*x^4 + 830*x^3 - 830*x^2 - (8*x^4 - 40*x^3 + 84*x^2 - 100*x + 83)*sqrt(x + 1)*sqrt(-x + 1)
+ 415*x - 83)/(x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 1)

________________________________________________________________________________________

giac [A]  time = 0.67, size = 42, normalized size = 0.42 \[ -\frac {{\left (4 \, {\left ({\left (2 \, {\left (x + 1\right )} {\left (x - 8\right )} + 63\right )} {\left (x + 1\right )} - 105\right )} {\left (x + 1\right )} + 315\right )} \sqrt {x + 1} \sqrt {-x + 1}}{315 \, {\left (x - 1\right )}^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(11/2)/(1+x)^(1/2),x, algorithm="giac")

[Out]

-1/315*(4*((2*(x + 1)*(x - 8) + 63)*(x + 1) - 105)*(x + 1) + 315)*sqrt(x + 1)*sqrt(-x + 1)/(x - 1)^5

________________________________________________________________________________________

maple [A]  time = 0.00, size = 35, normalized size = 0.35 \[ \frac {\sqrt {x +1}\, \left (8 x^{4}-40 x^{3}+84 x^{2}-100 x +83\right )}{315 \left (-x +1\right )^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-x+1)^(11/2)/(x+1)^(1/2),x)

[Out]

1/315*(x+1)^(1/2)*(8*x^4-40*x^3+84*x^2-100*x+83)/(-x+1)^(9/2)

________________________________________________________________________________________

maxima [A]  time = 3.08, size = 131, normalized size = 1.30 \[ -\frac {\sqrt {-x^{2} + 1}}{9 \, {\left (x^{5} - 5 \, x^{4} + 10 \, x^{3} - 10 \, x^{2} + 5 \, x - 1\right )}} + \frac {4 \, \sqrt {-x^{2} + 1}}{63 \, {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1\right )}} - \frac {4 \, \sqrt {-x^{2} + 1}}{105 \, {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )}} + \frac {8 \, \sqrt {-x^{2} + 1}}{315 \, {\left (x^{2} - 2 \, x + 1\right )}} - \frac {8 \, \sqrt {-x^{2} + 1}}{315 \, {\left (x - 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(11/2)/(1+x)^(1/2),x, algorithm="maxima")

[Out]

-1/9*sqrt(-x^2 + 1)/(x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 1) + 4/63*sqrt(-x^2 + 1)/(x^4 - 4*x^3 + 6*x^2 - 4*x
 + 1) - 4/105*sqrt(-x^2 + 1)/(x^3 - 3*x^2 + 3*x - 1) + 8/315*sqrt(-x^2 + 1)/(x^2 - 2*x + 1) - 8/315*sqrt(-x^2
+ 1)/(x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.36, size = 80, normalized size = 0.79 \[ \frac {17\,x\,\sqrt {1-x}-83\,\sqrt {1-x}+16\,x^2\,\sqrt {1-x}-44\,x^3\,\sqrt {1-x}+32\,x^4\,\sqrt {1-x}-8\,x^5\,\sqrt {1-x}}{315\,{\left (x-1\right )}^5\,\sqrt {x+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - x)^(11/2)*(x + 1)^(1/2)),x)

[Out]

(17*x*(1 - x)^(1/2) - 83*(1 - x)^(1/2) + 16*x^2*(1 - x)^(1/2) - 44*x^3*(1 - x)^(1/2) + 32*x^4*(1 - x)^(1/2) -
8*x^5*(1 - x)^(1/2))/(315*(x - 1)^5*(x + 1)^(1/2))

________________________________________________________________________________________

sympy [C]  time = 58.39, size = 933, normalized size = 9.24 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)**(11/2)/(1+x)**(1/2),x)

[Out]

Piecewise((-8*I*(x + 1)**4/(-315*I*sqrt(-1 + 2/(x + 1))*(x + 1)**4 + 2520*I*sqrt(-1 + 2/(x + 1))*(x + 1)**3 -
7560*I*sqrt(-1 + 2/(x + 1))*(x + 1)**2 + 10080*I*sqrt(-1 + 2/(x + 1))*(x + 1) - 5040*I*sqrt(-1 + 2/(x + 1))) +
 72*I*(x + 1)**3/(-315*I*sqrt(-1 + 2/(x + 1))*(x + 1)**4 + 2520*I*sqrt(-1 + 2/(x + 1))*(x + 1)**3 - 7560*I*sqr
t(-1 + 2/(x + 1))*(x + 1)**2 + 10080*I*sqrt(-1 + 2/(x + 1))*(x + 1) - 5040*I*sqrt(-1 + 2/(x + 1))) - 252*I*(x
+ 1)**2/(-315*I*sqrt(-1 + 2/(x + 1))*(x + 1)**4 + 2520*I*sqrt(-1 + 2/(x + 1))*(x + 1)**3 - 7560*I*sqrt(-1 + 2/
(x + 1))*(x + 1)**2 + 10080*I*sqrt(-1 + 2/(x + 1))*(x + 1) - 5040*I*sqrt(-1 + 2/(x + 1))) + 420*I*(x + 1)/(-31
5*I*sqrt(-1 + 2/(x + 1))*(x + 1)**4 + 2520*I*sqrt(-1 + 2/(x + 1))*(x + 1)**3 - 7560*I*sqrt(-1 + 2/(x + 1))*(x
+ 1)**2 + 10080*I*sqrt(-1 + 2/(x + 1))*(x + 1) - 5040*I*sqrt(-1 + 2/(x + 1))) - 315*I/(-315*I*sqrt(-1 + 2/(x +
 1))*(x + 1)**4 + 2520*I*sqrt(-1 + 2/(x + 1))*(x + 1)**3 - 7560*I*sqrt(-1 + 2/(x + 1))*(x + 1)**2 + 10080*I*sq
rt(-1 + 2/(x + 1))*(x + 1) - 5040*I*sqrt(-1 + 2/(x + 1))), 2/Abs(x + 1) > 1), (8*(x + 1)**4/(315*I*sqrt(1 - 2/
(x + 1))*(x + 1)**4 - 2520*I*sqrt(1 - 2/(x + 1))*(x + 1)**3 + 7560*I*sqrt(1 - 2/(x + 1))*(x + 1)**2 - 10080*I*
sqrt(1 - 2/(x + 1))*(x + 1) + 5040*I*sqrt(1 - 2/(x + 1))) - 72*(x + 1)**3/(315*I*sqrt(1 - 2/(x + 1))*(x + 1)**
4 - 2520*I*sqrt(1 - 2/(x + 1))*(x + 1)**3 + 7560*I*sqrt(1 - 2/(x + 1))*(x + 1)**2 - 10080*I*sqrt(1 - 2/(x + 1)
)*(x + 1) + 5040*I*sqrt(1 - 2/(x + 1))) + 252*(x + 1)**2/(315*I*sqrt(1 - 2/(x + 1))*(x + 1)**4 - 2520*I*sqrt(1
 - 2/(x + 1))*(x + 1)**3 + 7560*I*sqrt(1 - 2/(x + 1))*(x + 1)**2 - 10080*I*sqrt(1 - 2/(x + 1))*(x + 1) + 5040*
I*sqrt(1 - 2/(x + 1))) - 420*(x + 1)/(315*I*sqrt(1 - 2/(x + 1))*(x + 1)**4 - 2520*I*sqrt(1 - 2/(x + 1))*(x + 1
)**3 + 7560*I*sqrt(1 - 2/(x + 1))*(x + 1)**2 - 10080*I*sqrt(1 - 2/(x + 1))*(x + 1) + 5040*I*sqrt(1 - 2/(x + 1)
)) + 315/(315*I*sqrt(1 - 2/(x + 1))*(x + 1)**4 - 2520*I*sqrt(1 - 2/(x + 1))*(x + 1)**3 + 7560*I*sqrt(1 - 2/(x
+ 1))*(x + 1)**2 - 10080*I*sqrt(1 - 2/(x + 1))*(x + 1) + 5040*I*sqrt(1 - 2/(x + 1))), True))

________________________________________________________________________________________